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A rational theory is developed to describe the reattachment of a laminar shear layer 
in supersonic flow. In  the neighbourhood of reattachment the flow develops a three- 
tiered or ‘ triple-deck ’ structure analogous to that which occurs at a point of separation 
(Stewartson & Williams 1969) and, as in the separation problem, the local flow pattern 
may be found independently of the flow in the surrounding regions. The fundamental 
problem of the reattachment triple deck reduces to the solution of the incompressible 
boundary-layer equations in the lower deck, ‘which is of streamwise and lateral 
dimensions O(R-t)  and O(R-Q), where R 9 1 is a representative Reynolds number for 
the flow. Pressure variations in this region are O(R-4). Asymptotic solutions in terms 
of x, the scaled streamwise lower-deck variable, are derived to confirm the transition 
from a reverse flow profile at x = O +  , through reattachment, to a forward flow as 
x + cc, the attainment of the required asymptotic form downstream (as x -+ cc) being 
shown to depend crucially upon the correct choice of the finite part of the pressure in 
the lower deck at  x = 0 + . The lower-deck solution is singular at  x = 0 + and assumes 
a complicated multi-structured form which is shown to match upstream with the 
solution in a largely inviscid region of dimension O(R-3) where the pressure is O(1) 
and the major part of the flow reversal takes place. Solutions are presented for re- 
attachment a t  a wall and for symmetric reattachment behind a wedge or bluff body. In 
the former case the results also explain the apparent ignorance of upstream conditions 
in the expansive triple-deck solution formulated by Stewartson (1970) in the context 
of supersonic flow around a convex corner. 

1. Introduction 
The first complete and rational description of boundary-layer separation was pro- 

vided by Stewartson & Williams (1969). It was shown that the boundary layer formed 
along a wall by a uniform supersonic stream can spontaneously separate from the wall 
through a mechanism which allows a free interaction between the boundary layer 
and the external flow. The ‘triple-deck’ region in which this interaction takes place 
has lateral and streamwise length scales O(e3E), where E < 1 is defined by 

= R = rJ,E/v, (1.1) 

and R is the Reynolds number of the flow based on a convenient length scale I and the 
velocity and kinematic viscosity of the external stream, denoted by r!, and v,  res- 
pectively. The triple deck divides laterally into three decks: an upper deck of height 
O(EY) which is inviscid and irrotational, a main deck of the same height O(e4Z) as the 
boundary layer and a lower deck of height O(s5l). The fundamental problem reduces to 
the solution of the incompressible boundary-layer equations in the lower deck, and the 
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numerical solution by Williams (1975) has provided a precise value of the pressure 
rise through separation, which is of order e2. 

The importance of the triple deck in the theory of high Reynolds number flow is now 
without question. The assertion by Sychev (1972) that a similar asymptotic structure 
also governs separation in incompressible flow is strongly supported by the recent 
numerical calculations of Smith (1977). Many other examples of triple-deck applica- 
tions, some but by no means all of which involve separation, include flows due to 
injection (Smith & Stewartson 1973), flows at corners (Stewartson 1970) and flows at 
trailing edges (Stewartson 1969; Messiter 1970). 

In the present paper it is suggested that a triple-deck structure also governs the flow 
a t  reattachment and that, as in the original separation problem, the flow pattern in the 
triple deck can be found independently of the detailed structure and geometry of the 
overall flow. Specific models to which the theory should apply, and which have been 
widely studied, for example in experiments by Chapman, Kuehn & Larson (1958), 
Hama (1968) and Batt & Kubota (1968), include flows behind wedges, behind back- 
ward-facing steps and on compression ramps. Theoretical investigations of base flow 
by Denison & Baum (1963) and Weiss (1967) have been improved by Burggraf (1970) 
and more recently by Messiter, Hough & Feo ( 1  973), who considered the flow behind a 
backward-facing step and included a detailed analysis of the reattachment region 
which indicated the possibility of a triple-deck region downstream. Their theory was 
concerned with a step whose height is small compared with the boundary-layer length 
I, so that the major portion of the separated shear layer is of Blasius form to a first 
approximation and reattachment occurs within a short distance of the step. The 
return flow which feeds the separated shear layer is provided by a backward jet which 
emanates from a region of streamwise extent O(e*Z) at the point where the shear layer 
reattaches to the wall. The flow in this region is governed by inviscid equations and the 
return of the pressure to its ambient value downstream fixes the length of the separated 
shear layer since, by Bernoulli’s equation, the pressure rise across the small inviscid 
region must be balanced by the increase in velocity along the dividing streamline of the 
shear layer. This leads to an inviscid flow in which reattachment is not quite completed, 
suggesting, as in the previous study by Burggraf (1970), that the reattachment point is 
asymptotically far downstream of the inviscid zone. 

In $ 2 it is argued that the flow reversal in the inviscid zone must, under quite general 
circumstances, have the property that reattachment is almost, but not quite, com- 
pleted. An asymptotic solution is provided which supports this assertion and also 
indicates a division of the inviscid zone into three separate layers downstream which 
match precisely with the lateral subdivisions of the triple deck. The triple-deck struc- 
ture is formulated in $3, the major difference from the separation triple deck being 
that the appropriate scaled streamwise variable x is now restricted to the semi-infinite 
range 0 < x < oc, the inviscid zone where the shear layer first strikes the wall being 
sited at x = 0. 

The remainder of the paper considers the solution of the fundamental problem in the 
lower deck of the triple deck. The asymptotic solution as x 3 0 + involves a subdivision 
of the lower deck into three regions of lateral extent O(x), O(x]logx]i) and O(z-1), the 
presence of the second region, slightly wider than the first, being crucial in determining 
the correct asymptotic form. A similar structure is also relevant in the convex-corner 
problem studied by Stewartson (1970) and is discussed in $ 6 .  The importance of a 
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correct understanding of the asymptotic structure at x = 0 + is that the procedure by 
which the lower-deck equations must be solved then becomes apparent, for we find 
that the constant p1 in the expansion of the pressure at x = 0 + is arbitrary and must 
be chosen to give the correct asymptotic form downstream (as x ;.a) to match with 
the boundary-layer flow beyond reattachment. The solution as 5300 is discussed in 
$4.2 and flux considerations confirm that the expansion is consistent with that a t  
x = 0 + and therefore consistent with the reattachment of the flow at some finite value 
of x, X, say. An approximate method is devised to obtain crude estimates of the values 
of both X, and p l .  In  our basic model we consider reattachment a t  an impermeable 
wall although the modifications which occur in the case of two shear layers which merge 
symmetrically behind a wedge or bluff body are considered briefly in $ 5.  

2. The inviscid zone 
We shall suppose that a shear layer of thickness O(&) separates an external super- 

sonic stream from a region of stagnant flow and strikes a wall a t  the origin 0 of a set of 
Cartesian axes Ox*y*, where x* and y* are in directions along and normal to the wall 
respectively. If we denote the corresponding velocity components by u* and v*, the 
pressure by p*,  the density by p* and consider the flow in the region where X and Y, 
defined by 

are of order one, we have 

x* = E 4 X ,  y* = E4Y, (2.1) 

u* = V ( X ,  Y ) +  ..., v* = V ( X ,  Y ) +  ...) p* = P(X,  Y)+ ..., p* = R ( X ,  Y ) +  ..., 
(2.2) 

where, since E 4 1, IT, V ,  P and R satisfy the inviscid equations 

(2.3) 

ap ap 

a a - ( R r ' ) + - ( R V )  = 0, R ax ay 

Here y is the ratio of specific heats and the temperature has been eliminated in favour 
of the density using the equation of state. The boundary conditions for these equations 
include specification of the incoming shear-layer profile upstream, the external velo- 
city at Y = 0s and the inviscid wall condition V = 0 at Y = 0. The slip velocity 
t ' (X ,  0 )  is then reduced to zero a t  the wall within a viscous sublayer of height O(e6Z) 
(see figure 1) .  Although a complete solution of (2.3) is not possible, the general structure 
of the inviscid flow must conform to one of three possible patterns corresponding to the 
behaviour Y = Y,(X) of the dividing streamline of the incoming shear layer. First, 
we may have Y, = 0 a t  X = X,, in which case reattachment is completed within the 
inviscid region and we may expect a forward flow profile a t  X = co, with ['(a, 0)  > 0. 
However, by a form of Bernoulli's equation obtainable from (2.3) along Y = 0, this 
would imply that the wall pressure P(X, 0) reaches a maximum at the stagnation point 
X = X ,  and then decreases downstream and this seems improbable. Second, we may 
have Y, > 0 for all -0s < X < x ,  in which case the velocity profile at X = oo is re- 
versed at the wall, C ( c o , O )  < 0. But this seems equally unlikely since the inviscid 
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FIGURE 1. A schematic diagram of the flow regions near reattachment. 

zone would then serve no real purpose and in all probability the boundary conditions 
for the flow outside this zone would be underspecified. The remaining possibility is 
that Y,+O as X+m, in which case ['(a, 0) = 0, so that reattachment is nearly, but 
not quite, completed. The wall pressure P ( X ,  0) now increases monotonically through 
the inviscid zone from its value in the stagnant flow upstream to the ambient value 
p w  as X - t  co, where the following asymptotic structure may be developed for Y = O( 1) : 

The precise form of the velocity and density profiles t&, and R, will depend upon the 
details of the flow upstream but, as advanced above, we assume that &(O) = 0 and 
also Uo(oo) = l'& where [J, is the velocity in the external flow. We shall define 

Vi(0) = A, &(O) = R, and R,(cc) = R,. 

Then since (2.3) gives RI'BI'/BX = - BP/BX on Y = 0 we have 

R,A2D2 = - 2C. (2.5) 

Further, in the region where 5 = Y/X = O(1) we have 

where MZ, = UZ, Rw/ypm, and matching with the solutions (2.4) gives 

C(M2, - l)t/R, Vm = DL',. (2.7) 
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Equations (2 .5 )  and ( 2 . 7 )  now determine the unknown constants C and D ,  so that 

21'2, R, l T 6 (  Y )  2t7: R", 1' 4. [To( Y )  - + ..., P+pm- +... (X+Co). X R ,  A'(M2, - I)& X2Rwh2(M2, - 1) 
(2.8) 

There seems no reason to suppose that the eigenfunctions corresponding to ( 2 . 8 )  are 
absent, in which case we should have C = D = 0. 

3. The reattachment triple deck 

occur on the slightly longer length scale x1 = O(l), where 
The flow leaving the inviscid zone enters a triple deck in which streamwise variations 

x* = e3x1 (0 < x1 < m). (3.1) 

The triple deck divides laterally into three decks. In  the main deck, Y = O( 1) and 

(e + O ) .  (3.2) I u* = [7 o( Y )  +EAl(xl) ('A( Y )  + ..., V* = -e2&( Y )  A ~ ( x , )  + . .. , 
p* = &( Y )  + E A l ( X 1 )  R;( Y )  + . . . , p* = pa  + e2P1(xl) + . . . 

Here -4,(2,) is a function of x1 which represents the displacement thickness of the 
boundary layer. This is related to the pressure Pl through the solution of the wave 
equation in the upper deck, where Yl = SY = O( 1) and 

p* = pm + E ~ P ~ [ x ~  - Yl(M2, - I)&]. (3.3) 

The lower deck, where Y = O ( E ) ,  is required to reduce the slip velocity a t  the base of 
the main deck to zero and here the final problem reduces to the solution of the incom- 
pressible boundary-layer equations 

subject to the boundary conditions 

u = v = o  ( y = O ) ,  (3.5) 

u N y - A ( x )  ( y+m) ,  where p = A'(s), (3.6) 

p N - 2 p  (x+O+), (3.7) 

p+o  (z+cc). (3.8) 

These equations and boundary conditions have been reduced to their simplest form 
through the transformations 

x1 = ax, Y = €by, P1 = cp, A ,  = bA,  u* = Edb- lu, v* = ~3da-lv,  (3.9) 

v, is the kinematic viscosity at the wall and A,  = MA(O), where Mt(  Y )  = R, TTt/yp, is 
the local Mach number in the boundary layer. 
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The full derivation of the system (3.4)--(3.10) including details of matching between 
the three decks is given by Stewartson & Williams (1969); the only differences here 
are that the system is restricted to the range 0 < x < cc instead of - x < x < 03 and 
the pressure must satisfy the boundary conditions (3.7) and (3.8).  The first of these 
ensures that the triple-deck solution matches with that in the inviscid zone upstream, 
the main- and upper-deck solutions matching with (2.8) and (2.6) respectively. The 
second condition ensures that the triple-deck solution matches with an attached 
boundary-layer flow downstream and is discussed in $4.3 below. 

Of the parameters A = T'h(O), A, = iMi(0) and v, which appear in (3.10), the last is 
dependent upon the viscosity law chosen. The first two depend upon the details and 
geometry of the flow upstream, and although their values are not required to solve the 
lower-deck problem, we note that for the specific case of a backward-facing step 
approximate values may be inferred from the results of Messiter et aE. (1973) as 

h = KCL1-l[l++(y- l)M:]. ', (3.11) 

A, = KM, 2-1[ 1 + +(y - 1) M3-4. (3.12) 

These formulae are based on the assumptions that the step height is 71, where 7 < 1, 
that the wall is adiabatic and that the viscosity varies linearly with temperature. I is 
taken as the length of the Blasius boundary layer upstream of the step and reattach- 
ment is at a distance 0(~*1) downstream of the step. The numerical constant K is 
related to the precise form of the profile in the separated shear layer as it enters the 
inviscid zone. 

We emphasize that the reattachment problem (3.4)-(3.8) is a universal one, form- 
ulated quite independent-ly of any of the assumptions related to the above model, and 
it now remains to demonstrate that a consistent solution of the lower-deck equations 
may be found which incorporates reattachment at  some finite value of x. 

4. The lower-deck problem 
From (3.4) we introduce the stream function $ defined by 

u = a3lr,lay, v = -a$,lax; $ = 0 on y = 0. (4.1) 

4.1. Asymptotic solution as x 3 0 + : the reverse $ow profile upstream 

The leading terms are essentially those given by the terms in the asymptotic expansion 
of the inviscid-zone solution as X +  cc so we expect u = O(x-l) andp  = O(x-2). It then 
follows that viscous effects are significant when y = O(x). More generally, if we con- 
sider the possibility that y = xf(x) ij and $ = f(x) $@), where y" and $ are of order one, 
we find that the four terms in the lower-deck momentum equation (3.4) involve orders 
of magnitude x-~,  x-Y-~ and x-2f'f-l, so that, in addition to f = 1, a balance may be 
possible with f = jlogxJ*. It emerges that the two regions corresponding to both these 
values off are present in the asymptotic structure of the lower-deck solution as x-f 0 + . 
We shall show that this leads to a pressure expansion of the form 

p = -2x-2+ p1+X2{p2(logxp +p,+ .. .}+ ... ( X - t  o +  ), (4.2) 

with A = 2x-1+p1x+x3{+p2(logxp++p3+ ...}+ ... ( X + O + ) ,  (4.3) 
where the coefficient p ,  remains arbitrary. 
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In  the inner region, where 7 = y/x is the order-one variable, the expansion for the 
stream function has the form 

@ = 4 ( 7 ) + W 0 ( 7 ) +  I1ogx) .*G,(7)+ Jlogx\-1Gz(r)+ ...} 
+x4{(logxl*Ho(~) + Hl(7)  + .. .} + ... (x+ o +  ). (4.4) 

Substitution into the lower-deck equation then gives at leading order the system 

F;+FAz = 4, Fo(0) = P;(O) = 0, P;(co) = -2,  (4.5) 

where the first two boundary conditions follow from (3.5) and the third from the outer 
condition (3.6), in which A is given by (4.3). The consistency of the coefficients of the 
O(@) and O(x- l) terms in p and A (respectively) is a result of the same interaction 
between the upper and the main decks as that which leads to (2.7). The appropriate 
solution of (4.5), which is shown in figure 2, is 

FA = 4-6tanh2(7+Co), C0 = tanh 1(3 )*  = 1.146 ..., (4.6) 

and we have Fo - - 27 + Cl as 7 -+ m, where C, = 6[ 1 - (%)*I. 
In  the ' transitional ' region where 

e = y/xliogxp (4.7) 

is of order one, the stream-function expansion begins 

$ = - 2pog XI *e + c1 + xZ{ llog XI go(B) + (log x! *gl(0) + gz(8) + . . .) 
+ x4{ (log x( hO(B) + (log 2[*h1(8) + h,(B) + . . .> 
+ x4 exp (2i4 log x( *) {\log x( 4 A,,(@ + A,(O) + . . .} + C.C. + . . . . (4.8) 

Here the leading terms are simply the continuation of the unchanged inner solution 
Fo and a t  order x4 we find (below) that oscillatory terms with spatial frequency 

O(llogx(*) as z+oc 

must be included in the expansion, the complex conjugate being denoted by C.C. 

(4.9) 
The equation for go is 

g: + egg - g; = 0, 

but since we require gi - 0 + 0 as 6 + co, and, in order to match with the inner solution, 
go(0)  = gh(0) = 0, the solution is simply 

go = *ez. (4.10) 

Although a term O((logx(4) in the pressure would result in a constantplo, say, on the 
right-hand side of (4.9) we should then require g; - O+2plo as B-+co, so that, from 

The solution (4.10) now provides the outer boundary condition for Go in the system 

G l +  2F; Go = 0, Go(0) = G;(O) = 0, G;(CO) = 1 (4.1 1) 

(4.9)) PlO = 0. 

and the numerical solution, shown in figure 2, has the property 

Go - 37"-tZ7+C, ( 7 + a ) ,  (4.12) 
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where C2 = - 0.920 and C3 = 0.964. The constant C2 now generates the term 9, in the 
transitional region, which must satisfy 

g:+egl" = 0, g,(O) = 0, g;(o) = C2) gl(cc) = -pl, (4.13) 

the last condition arising from the outer condition (3.6). The solution is 

9; = c2 - ($3 + C2) erf(8/24, (4.14) 

where p l  remains completely arbitrary. At 0 = 0 the value of g l (0 )  provides the outer 
condition for G,, which then generates g2 and so on: 

G;l' + 2FgG1 = 0,  G,(O) = G;(O) = 0, G;(cQ) = - 2 ( 2 / n ) t ( p , + C 2 ) ,  (4.15) 

g i  + 89; + gk = 0, g2(0) = 0, gk(0) = lim {G; + 2(2/n)4(p1 + C2) r}, 9,  = o(1og 8) 

( 6 - t ~ ~ ) .  (4.16) 

There will be an infinite set of functions Ci and gi (i = 0 , 1 , 2 , .  ..) associated with 
successive powers of I log X I  -4. 

In (4 .16)  the last condition is required for consistency with the solution outside the 
transitional layer, where the order-one variable is 

7-w 

5 = yx. (4.17) 

Strictly speaking we should apply the condition (3.6) as g-+ x for the first two terms in 
the expansion of u outside the inner region are - 2 / x  and y; these are of the same order 
of magnitude when E = O( l ) ,  and indeed as <-+ cc it  is the second which dominates the 
first. Fortunately the solution in this outer region does not really affect the expansion, 
the appropriate terms being continuations of the inner solutions and at most quadratic 
functions of 5. The expansion is 

7b = x-"(M2 - 25) t- (Q, -P, E )  + x2(110g "(*(:P2 - QP2 6 )  + ($P3 - iP3.5) + . ..} + . . . 9  

(4.18) 

where the last two terms match with the transitional-layer solution as c-+ 0 provided 

(4.19) 
that 

successive terms being generated by the finite parts of the gi (0 )  as 8 +a. 
It is of interest to note that at  this stage in the expansion there is no requirement that 

the transitional layer be present, although then we must takep, = -C2, in which case 
the solution is completely determinate, a fact commented upon by Stewartson (1970) 
in his study of a related triple-deck singularity arising in convex-corner flows. How- 
ever the presence of the transitional layer is confirmed beyond doubt by the higher- 
order terms in the expansion. In  the inner region the functions H, and H, are generated 

P2 = gn-% + (7219 P3 = Qg,(CQ), 

by p2, P3 and F1: 

Hl-2FAHA+4FbHo= 2 ~ 2 ,  H,(O) = HA(0) = 0, H ,  N 41327 ( ~ - + c c ) ,  (4 .20)  

H: - ZFA H i  + 4Fg H, = 2p3 + Fi2- 2 4  F;, H,(O) = HI(0) = 0, H, N $p3v 
(7-t a). (4.21) 

We see that since FA + - 2 (7 -+ x) two of each of the three complementary solutions 
of these equations are oscillatory as 7 -+ cc. It follows that, if the boundary conditions 
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a t  the wall are to be satisfied, oscillations are forced into the outer regions of the flow, 
in particular 

(4.22) 

where we may suppose that the numerical solution of (4.20) will provide values of 
a,, Po and 7, as functions of A, = Hb(0). Three such solutions are shown in figure 2. 

In  the transitional layer the non-oscillatory part of Ho automatically matches with 

(4.23) the solution 

which, since la; N - 47~-t(p, + C,) as 8-t cc, also matches automatically with the outer 
solution (4.18). The oscillatory part of H, generates the function A,, which satisfies the 

(4.24) equation 

and therefore assures the decay of the oscillations, with 

Ho P 2 b  + a,@,) cos 211 + Po@,)  sin 27 + YO(A0)) (7 -+ m), 

h; = 9es; - as, + 4Pz - m;, 

A;+geA, = o 

A ,  = aPz(a0 - iB0) exp ( - QW,. (4.25) 

The corresponding solution for A ,  is 

A ,  = $p,(cc, - ipl) exp ( - gOz) - +i8(010 - ip,) ( 1  -&Oz) exp ( - &Sz), (4.26) 

where a1 and B, are functions of A, = H;(O) and are obtained from the solution of 
(4.21). We see that, in addition to p, ,  the full expansion as z+ O +  also involves an 
infinite set of indeterminate constants A, (i = 0, 1 ,2 ,  ...); further unknown constants 
arise from oscillations of higher frequency generated by all the higher-order terms in 
the inner expansion in powers of XZ and llogx1-). 
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The major properties of the upstream profile are now determined. Viscous effects, 
includingweakoscillations, are confined to two layers of thickness O(x) and O(x11og X I  4). 
The inner one matches, as x -+ 0 + , with the viscous sublayer of the inviscid zone of 
thickness O(e6) while the outer one also indicates the presence of a slightly wider sub- 
layer of thickness O(esJloge14) between the inviscid zone and the wall. In  the outer 
region where 5 = O( 1 )  the stream function is 

$h - iy2-2y/x+ ... (x+O+), (4.27) 

so that the line of zero streamwise velocity, y - 2/x, bisects the region between the 
wall and the dividing streamline, y N 412. Outside this line the forward flow profile 
increases to the uniform shear prescribed by the boundary-layer profile U,,(Y) at 
Y = 0. The singular part of the pressure matches with that in the inviscid zone, while 
the value ofpl will provide an O(e2) correction to the inviscid pressure upstream. The 
determination of p1 is discussed in $4.3 below. 

4.2. Asymptotic solution as x +  cc : the forward flow psojile downstream 

The requirement thatp + 0 as x +  00 leads to an asymptotic structure of the same form 
as that derived by Smith & Stewartson (1973) in the context of slot injection into a 
laminar boundary layer. Thus we expect 

@ = +y2+f1(7/l)+ ..., p = OX-%+ ..., A = -sax-)+... (X+CC), (4.28) 

(4.29) 

The constant u remains undetermined by the lower-deck equations and boundary 
conditions but may be related to the constant p, by general considerations of mass 
flux. From $4.1 the flux into the lower deck between the points y = 0 and y = yo 
($- 1) on the line x = x, (< 1) is 

The flux entering through y = yo in the region xo < x c 00 is 

and since (4.31) and (4.30) must be balanced by the flux 

(Y + x-+f I) dY *Yo" +f1(0O) 

leaving through x = 00 we obtain from the finite parts 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

This confirms that the upstream profile obtained in 34.1 is consistent with the attain- 
ment of a forward profile downstream and thus with the reattachment of the flow at a 
finite value of x given by xR, where 0 c xR < 00. 
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Downstream of the triple deck (x* > 0 )  the forward flow along the wall is simply 
found by solving the boundary-layer equations subject to the initial profile 

u*=I,T,(Y) at x*=  0 

and the boundary condition u* -+ r;  as Y -+ a. We expect the compressible Blasius 
profile to evolve as x* -+ co. 

4.3. The numerical solution of the tower-deck problem 
The expansions of 5 4.1 and 4.2 now point the way to the correct procedure for the full 
solution of the triple-deck reattachment problem. Previous studies of the numerical 
solution of the lower-deck equations based on finite-difference schemes have shown 
that the solution will, in general, evolve into one of three possible asymptotic struc- 
tures as x increases (see Stewartson 1974). I n  the original problem of Stewartson & 
Williams (1  969) for instance, an initial positive pressure increment leads to the com- 
pressive solution, in which separation occurs and the pressurep reaches a plateau value 
of about 1-8 as x -+ m. An initial negative increment leads to the expansive solution, 
which terminates in a singularity a t  a finite value of x, while if the pressure increment 
is zero, the Blasius solution (u = y, v = p = 0 )  simply continues unchanged. Similar 
solutions are discussed in relation to the flow a t  the trailing edge of a flat plate by 
Daniels (1974). 

In  the present problem a similar situation must arise and the attainment of the 
correct asymptotic form (4.28) downstream will depend upon the correct choice of the 
arbitrary constant p ,  in the expansion of the pressure a t  x = 0 + . If p ,  is too large we 
may expect the compressive solution to evolve as x e cc and the pressure eventually to 
attain a plateau value. If p1 is too small the expansive solution will evolve and the 
solution will terminate in a singularity. The required value of p ,  is the one which 
separates these two possibilities. Its numerical determination will be a formidable 
task, for not only do we have to contend with the singular structure of the solution a t  
x = 0 + , but the presence of large negative velocities will necessitate iterative back- 
ward sweeps over the reverse flow region from the reattachment point possibly using 
an extension of the boundary-layer scheme of Klemp & Acrivos (1972). 

I n  view of these difficulties we shall for the present resort to an approximate method 
of solution. A simple patching of the two asymptotic solutions yields encouragingly 
realistic results, mainly because of the close similarity of the expansions (4.2) and 
(4.28). We require the displacement thickness and pressure to be continuous a t  
x = xp, so that 

The resulting cubic for p ,  has just one real root, 

4 (4.34) -2/x;+p, =ax,+, 2/xp+p1xp = -3axp . 

p ,  = 0.032 (with xp = 5.569, a = -0.318), 

and the corresponding solutions are shown in figure 3. Continuity of A a t  x = xp en- 
sures that the discontinuity in velocity profile at this point is r e s t r i e d  to the neigh- 
bourhood of the wall; a few profiles for more realistic values of x ate included in figure 
3. The estimate of the reattachment position based on the first two terms of the small x 
expansion (4.4) is xR = 2.753. (4.35) 
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FIGVRE 3. Curves of pressure, displacement function and velocity profiles based on the approxi- 
mation (4.34) and computed from the asymptotic solutions with p1 = 0.032, xp = 5.569 and 
a = - 0.318 (small x expansion for x < xp; large x expansion for x > x,). 

5. Reattachment behind a wedge 
If the reattachment takes the form of two symmetric free shear layers which merge 

behind a wedge at  x* = y* = 0, the previous formulation of the inviscid zone and 
triple-deck structure is unchanged except that the lower-deck boundary condition 
(3.5) is now replaced by 

u = 2 u / 2 y = O  on y =  0 (0 < x  <GO). (5.1) 

The main difference in the asymptotic structure at  x = O+ is that the inner viscous 
region is no longer required. The transitional-region solution now has the form 

II. = - 2e1iogxlt+x2{iiogxlgl(e) + pog~pg,(e)} 

+ x4pog xpho,,ol(e) + o( jiog xi)} + . . . (x + o + 1, (5.2) 

where g; = eerf(8/23)+(2/n)texp(-~82), g, = -p,e (5.3) 

and hi1 = acg;z- 2 9 4  f Q x 23). (5.4) 

We find that the constantp,, in the expansion of the pressure is again arbitrary and the 
leading-order correction to this term is now O(llog X I * )  larger than before: 

p = -2 /x2+p1+52{&x 2t(logx( +o(pog2(3)}+... (x+O+). (5.5) 

In the absence of the wall the reverse flow region simply extends almost linearly across 
the region between the lines y N .t 2/x, the maximum reverse velocity being u N - 2/x 
on the line of symmetry y = 0. Although the inner viscous region is virtually redun- 
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dant, witheffectively Fi = - 2, we note that the oscillatory solutions are not necessarily 
ruled out since (4.20) and (4.21) now have complementary eigensolutions of the form 
sin 27 which obey the boundary conditions (5.1). 

Downstream, the appropriate expansions in the lower deck as x +  00 are 

@ = xf fo ( r l )  + 3a7, + . . . , p = po x-3 + ax-* + . . . , (5 .6)  

the leading term being that which occurs in the trailing-edge problem studied by 
Stewartson (1970)) with 

,f: + 6fo.f; - = 0) fo(0) =,fo"(o) = 0 and fh 71- 3Po (71 +a)* 

The numerical solution gives p o  = - 0.297. Once again the coefficient a is determined 
in terms of p1 by flux considerations. In  this case we obtain 

a = -2)1/3230. (5.7) 

Downstream of the triple deck the problem in the wake is to solve the boundary- 
layer equations subject to the double-structured initial profile supplied by Uo( Y ) ,  where 
Y = O( 1 )  and by fo where Y/x*a = O( 1). The solution now approaches the uniform 
profile U, as x* -+ 00. The reattachment position is now interpreted as x = xR,  where 
u(xR, 0 )  = 0 and the estimate based on the expansion (5.2) is xR = 1.806. 

6. Discussion 
We have obtained a consistent picture of laminar boundary-layer reattachment for 

supersonic flow in the limit as the Reynolds number tends to infinity. The basic struc- 
ture is similar to the triple-deck structure which describes separation and involves an 
interaction between the boundary layer and the inviscid flow. Just upstream of 
reattachment the majority of the flow reversal takes place in an inviscid zone of 
dimension O(R-3) in which the dividing streamline approaches the wall only asympto- 
tically, and final reattachment is completed in the lower deck of streamwise extent 
O ( R f  ). Our approximate solution of the lower-deck equations suggests that the posi- 
tion of reattachment is a t  a distance 

downstream of the point where the centre-line of the shear layer intersects the wall. 
Quantitative comparisons with experimental work will require a full numerical solu- 
tion of the lower-deck equations but we note that the overall flow pattern and mono- 
tonic pressure variation near reattachment are in agreement with the experimental 
evidence available. For reattachment at a wall we have shown that the final pressure 
decay downstream is proportional to R-)(R'x*/l)-* while for a symmetric reattach- 
ment this is replaced by the slower decay R-i(Rjx*/l)-f. Another contrast is in the 
variation of A(x)  as x+00, a more rapid narrowing of the boundary layer just down- 
stream of reattachment being predicted in the symmetric case. 

One of the interesting features of the lower-deck solution is the presence of weak 
spatial oscillations of an asymptotically high frequency. Matching implies that these 
will persist in the flow upstream and their possible absence in the symmetric problem 
suggests that physically they may be the manifestation of a weak instability associated 
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with the region of large shear near the wall. Also we note that the presence of the 
transitional layer in the lower-deck expansion a t  x = 0 + resolves the apparent absence 
of an indeterminacy of the expansive triple-deck solution discussed by S tewartson 
(1 970) in the context of convex-corner flow. Here the singularity arises as x increases 
and the basic solution outlined by Stewartson has 

1, N - 2 p ,  u * y4-215 (y 9 5 )  5 .+0+) )  (6.2) 

where 5 = -x. The expansion now represents an entirely forward flow accelerating 
to a sink-like singularity at 2 = 0. The results of $4.1 for the higher-order terms in the 
expansion may be applied directly to this problem simply by changing the signs of 
7, B and in the various equations and expansions. The constant p1 is thus again arbi- 
trary and its indeterminacy now represents the ignorance of conditions upstream of 
the singularity. In  fact it seems likely that this expansion will also be relevant to the 
problem of a backward-facing step in the region at  the top of the step. Here a pressure 
variation O( 1) must occur in an inviscid zone (I,) of dimension O(R-4)) governed by the 
system (2.3)) where the backward jet which originates from the inviscid zone at 
reattachment (I2) mixes with the oncoming boundary layer. Just upstream of the 
step a triple-deck solution withp* -pa = O(R- 4) will terminate in the singularity (6.2) 
and match with the solution in the inviscid zone I, (in essentially the same way as in the 
reattachment problem; $§3 and 4). The appropriate value of p , ,  the leading-order 
correction to the pressure in (6.2)) was computed with a finite-difference scheme, 
marching downstream from an initial profile u = y with p = - In  contrast to 
the reattachment problem, there are no difficulties concerning reverse flow; the 
numerical results reported by Stewartson (1  970) were recovered and a closer scrutiny 
of the singularity gave 

(6.3) p ,  2 -0.3. 

In  specific problems there are still various features of the laminar high Reynolds 
number flow which are not adequately understood. One is the lip shock which stems 
from the region I, referred to above and which has been studied experimentally by 
Hama (1968). In the outer flow this reacts with the main reattachment shock from the 
zone I, considered in 9 2. In the wake flow further study is also required to determine 
the properties of the recirculating eddy enclosed by the detached shear layer and 
backward jet upstream of reattachment. 

REFERENCES 

BATT, R. G. & KVBOTA, T. 1968 A.I.A.A. J .  6, 2077. 
BtrRQQRAF, 0. 1970 P.S. Air Force Aerospace Res. Lab. Rep. ARL 70-0275. 
CHAPMAN, D. R., KZTEHN, D. M. & LARSON, H. K. 1958 N.A.C.A. Rep. no. 1356. 
DANIELS, P. G. 1974 Quart. J .  Mech. AppZ. Math. 27, 175. 
DENISON, M. R. & BAZTM, E. 1963 A.I.A.A. J .  1, 342. 
HAMA, P. R. 1968 A.I .A.A.  J .  6, 212. 
KLEMP, J. B. & ACRIVOS, A. 1972 J .  Fluid Mech. 53, 177. 
MESSITER, A. F. 1970 S I A M  J. Appl. Math. 18, 241. 
MESSITER, A. F., HOUGB, G. R. & FEo, A. 
SMITFI, F. T. 1977 Proc. Roy. SOC. A 356, 443. 
SMITE, F. T. & STEWARTSON, K .  1973 Proc. Roy. Soc. A 332, 1.  
STEWARTSON, K. 1969 Mathematika 16, 106. 

1973 J .  Phid Mech. 60, 605. 



Reattachment in supersonic flow 303 

STEWARTSON, K. 1970 Proc. Roy. SOC. A 319, 289. 
STEWARTSON, K. 1974 Adv. Appl. Mech. 14, 145. 
STEWARTSON, K. & WILLIAMS, P. G. 1969 Proc. Roy. SOC. A312, 181. 
SYCHEV, V. Ya. 1972 Izv. Akad. Nauk SSSR, Mekh. Zh. Cam 3, 47. 
WEISS, R. 1967 A.I.A.A. J .  5, 2142. 
WILLIAMS, P. G. 1975 Proc. 4th Int. Comf. Num. Meth. Fluid Mech., Boulder 1974; Lecture 

Notes in Phys. vol. 35, p. 445. Springer. 




